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Abstract

An iterative procedure is described for the solution of the indefinite Helmholtz equation that is a two-step general-

ization of classic Jacobi iteration using complex iteration parameters. The method converges for well-posed problems at

a rate dependent only upon the grid size, wavelength and the effective absorption seen by the field. The use of a simple

Jacobi preconditioner allows the solution of 3D problems of interest in waveguide optics in reasonable runtimes on a

personal computer with memory usage that scales linearly with the number of grid points. Both the iterative method

and the preconditioner are fully parallelizable.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The indefinite Helmholtz equation occurs repeatedly in the description of virtually all problems involv-

ing wave motion modelled in the frequency domain; i.e. single frequency wave motion with time-independ-

ent amplitudes. Two prominent examples are the propagation of sound waves in water, and the

propagation of light through a dielectric medium. In both these cases, problems of current interest com-

monly require three-dimensional (3D) modelling with complicated material geometries and/or problem
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boundaries, in other words, numerical models. But the grid size for such models is restricted to some frac-

tion of the wavelength, and thus 3D models for practical problems usually result in matrix equations too

large to be solvable by direct inversion. A similar situation in potential theory was dealt with half a century

ago by the introduction of a number of attractive iterative methods for the solution of Poisson�s equation
including successive over-relaxation (SOR), alternating direction implicit (ADI) [1,2] and (more recently)
multigrid algorithms [3], just to name a few. This success was in large part due to the definite nature of

the Laplacian operator, i.e. it�s eigenvalues are all of one sign. In contrast, it has been known for some time

that the indefinite nature of the Helmholtz operator describing wave motion renders most of these classical

methods non-convergent. The one exception is multigrid, which although convergent, is limited in useful-

ness because solutions on grids too coarse to adequately resolve the wavelength become poor approxima-

tions, and solutions on grids finer than about one-tenth of a wavelength unnecessary. Thus the dynamic

range of available grids (and therefore the feature that gives multigrid methods their advantage) is limited

to less than an order-of-magnitude.
More recent modelling activities directed towards addressing this problem have gravitated towards the

collection of methods known as Krylov subspace methods [4]. These techniques seek to minimize some

function of the residual vector in an optimal manner. Included in this category are well-known methods

such as conjugate gradients (CG) and generalized minimum residuals (GMRES), among others. Although

effective in some cases, they tend to be complicated and difficult to use. In many cases, the use of precon-

ditioners is a requirement for convergence, so that the search of a suitable preconditioner adds substantially

to the burden of the modeler.

This article describes the generalization of one of the classical iterative techniques, namely Jacobi iter-
ation [5], to make it convergent for the indefinite Helmholtz equation. Jacobi�s original method has enjoyed

little use except as a smoother for multigrid schemes, even for Laplace�s equation, due to its unacceptably

slow convergence rate and poor scaling with problem size. For the Helmholtz equation it is nonconvergent

in its original formulation. When used as a two-step method with complex iteration parameter, however, it

will be shown below to converge at a rate dependent only upon the grid size, wavelength and effective

absorption coefficient. The method is simple to understand and code, and is immediately suitable for par-

allel computing. In the sections to follow, we develop the basic theory of convergence for a simple 2D mod-

el problem, discuss the use of preconditioners, and apply the method to a 3D example problem describing
reflection of a dielectric waveguide mode at an etched air gap.
2. Discussion of the method

We begin by considering the simpler case of the indefinite Helmholtz equation in two dimensions
r2 þ k2
� �

Hðx; yÞ ¼ 0; Rðk2Þ > 0; Iðk2Þ > 0; ð1Þ
where the restriction on the real part of k2 is necessary for the description of wave motion; i.e. it is what is

meant by the adjective ‘‘indefinite’’. The second restriction on the imaginary part is necessary for the prob-

lem to be well-posed in the following sense: waves generated in the problem interior or introduced at a

Dirichlet boundary must be absorbed somewhere, either in an absorptive material contained within the

problem region or at a transparent boundary. Otherwise, no steady state solution in terms of wave ampli-

tudes is possible. It does not preclude the presence of gain or lossless materials in specific regions, only that
loss must predominate in some overall sense. If the loss occurs at a boundary, then the restriction above is

understood to be an ‘‘effective’’ material loss. The point is that the restrictions above do not represent any

real limitations of the method, but are necessary to investigate convergence rates.

Again for the sake of simplicity and concreteness we shall examine the finite difference form of Eq. (1)

using a uniform Cartesian grid:
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d2x þ d2y þ k2
h i

H ¼ 0; ð2Þ
where the finite difference operators are the common centered forms
d2xH � Hiþ1;j þ Hi�1;j � 2Hi;j

Dx2
; ð3Þ

d2yH � Hi;jþ1 þ Hi;j�1 � 2Hi;j

Dy2
; ð4Þ
and the subscripts refer to the x,y grid positions as usual. The standard Jacobi iterative method is defined

by
2a
1

Dx2
þ 1

Dy2

� �
Hnþ1

i;j � Hn
i;j

� �
¼ d2x þ d2y þ k2
� �

Hn; ð5Þ
where the superscripts refer to iteration level and a is the iteration parameter. (In Eq. (5), a more

standard form of the so-called point Jacobi method would include the term k2 in the factor on the

left-hand-side. This term has been omitted in order to keep the latter from becoming zero for coarse

grids. However, including it would not change any of the basic conclusions below.) A common way of

investigating the convergence properties of such a scheme is to look at the ratio of the amplitudes of a

single Fourier mode
Aei ði�1ÞkxDxþðj�1ÞkyDy½ �; ð6Þ

between successive iterations:
Anþ1

An ¼ 1þ n� 2sin2d
a

; ð7Þ
where we have defined the spatial frequency parameter
sin2d �
sin2 kxDx

2

1þ Dx2
Dy2

þ
sin2 kyDy

2

1þ Dy2

Dx2

ð8Þ
and
n � k2

2 1
Dx2 þ 1

Dy2

h i : ð9Þ
It is apparent that there is no value of a that will keep the ratio in (7) within the unit circle for all spatial
frequencies unless n = 0 (Laplace�s equation). In that case
Anþ1

An ¼ 1� 2sin2d
a

: ð10Þ
The convergence rate (10) is unacceptably slow for the lowest spatial frequencies, and consequently

Jacobi iteration has never been seriously considered as an iterative method for Laplace�s or Poisson�s equa-
tion. However, setting a = 2 leads to rapid damping of the highest spatial frequencies, and so Jacobi iter-

ation has sometimes been employed as a smoother in multigrid schemes where the low spatial frequencies

are converged on a coarser grid.
Returning to the Helmholtz equation, we see that classical Jacobi iteration is not convergent. This can be

remedied, however, by considering pairs of Jacobi steps with different complex a�s. Then
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Anþ2

An ¼ 1þ n� 2sin2d
a1

� �
1þ n� 2sin2d

a2

� �
: ð11Þ
To confront the problem of the indefiniteness of the Helmholtz eigenvalue n � 2sin2d, we take a2 ¼ �a�1.
Then (dropping the subscripts on the a�s) we have
Anþ2

An ¼ 1�
2iai n� 2sin2d
� �

þ n� 2sin2d
� �2

aj j2
; ð12Þ
where from now on we will use the notation a = ar + iai. Eq. (12) shows clearly that the indefinite eigenvalue
now either appears squared or multiplying a purely imaginary number. To examine the stability of the

scheme further, we write n = nr + ini and define w ” nr � 2sin2d, resulting in the expression
Anþ2

An ¼ 1� a� bi; ð13Þ
where
a � w2 � n2i � 2aini
aj j2

; ð14Þ

b � 2w ai þ nið Þ
aj j2

: ð15Þ
A quick examination of (13) shows the stability condition to be
b2 < a 2� að Þ: ð16Þ

Inserting the definitions (14) and (15) into (16) and defining the normalized quantities
a0i �
ai
aj j ; w0 � w

aj j ; n0i �
ni
aj j ; ð17Þ
results in the inequality
4w02 a0i þ n0i
� �2

< w02 � n02 � 2a0in
0
i

� �
2� w02 þ n02i þ 2a0in

0
i

� �
: ð18Þ
In typical problems n0i is usually small, so we proceed by neglecting the square of n0i compared with other
quantities. After some rearrangement of terms, this results in
a02i <
1

2
� w02

4
� a0in

0
i 1þ 1

w02

� �
: ð19Þ
Now we shall soon see that a0i is always negative, and since n0i has been restricted to be positive, it is suf-

ficient to demand that
a02i <
1

2
� w02

4
: ð20Þ
The most restrictive condition occurs for the maximum value of w 02, which is approximately 4/jaj2, cor-
responding to the highest spatial frequencies allowed by the grid. Thus the stability condition simplifies to
a2i < a2r � 2; ð21Þ

which immediately requires a2r > 2. So, as is common with iterative methods, the stability condition results

from the prevention of unstable growth of the highest spatial frequencies. Given this restriction, what
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convergence rate can be expected for real problems? Dominant spatial frequencies in a converged problem

are those in the vicinity of w = 0 since these are the frequencies that correspond to satisfaction of the orig-

inal Helmholtz equation. For this value of w, the convergence rate from (12) is
Anþ2

An ¼ 1þ n2i þ 2aini
aj j2

ð22Þ

� 1þ 2aini
aj j2

ð23Þ
Thus we see that for convergence to occur, ai must be negative. Next we must determine the complex
number a that, subject to the stability constraint (21), provides the highest convergence rate. It is seen from

(23) that jaij should be as large as possible, so we look along the stability boundary. It then follows from

simple differentiation that the optimum parameter is a ¼ ð
ffiffiffi
3

p
;�1Þ which corresponds to ai/jaj2 = �1/4 and

a convergence rate of
Anþ2

An ¼ 1� ni
2
¼ 1� Iðk2ÞDx2

8
ð24Þ
for Dx = Dy.
Thus, we see from (24) that convergence is assured provided that the ‘‘effective’’ imaginary part of k2 is

positive; i.e. that there is net loss. We emphasize that this does not require that any particular material in

the problem be lossy, and is a restriction essentially on the problem eigenvalues, which are influenced also

by the boundary conditions. In addition, we see from (24) that there is a penalty for fine zoning, since the

convergence rate decreases as the square of the grid size, in addition to the increased computational time
per step due to the added grid points. In practice, however, the necessary grid resolution is approximately

fixed by the wavelength, and further grid refinements are of limited benefit. In other words, kDx is roughly

constant from problem to problem, with the total run time then scaling more-or-less linearly with problem

size.

The specific form of Eq. (5) also points to two major advantages of this method: parallelization and low

memory requirement. Since the updated field at a certain grid point depends only upon nearby fields at the

previous iteration step (the method is a point relaxation scheme), it is manifestly parallelizable. This fact

promises considerable time savings for large problems when compared with more complex schemes that
do not parallelize. Also, memory requirements are low even for large problems, because only enough mem-

ory is needed to store field components and coefficients. This results in a memory requirement proportional

to the number of grid points.
3. Model problem convergence

We purport to test the convergence rate predictions derived in the previous section by numerical solution

of a simple model problem. The problem parameters are detailed in Fig. 1. The interior is a single lossy

material, and all boundary conditions are Dirichlet in nature, with a nonzero Gaussian field at the bottom

boundary to act as a source. The loss range has been set low enough to allow significant boundary reflec-

tions, but high enough to enable convergence in a reasonable number of iterations. The computed field
amplitude profiles are shown in Fig. 2. Using the optimum value of a as computed above, the model prob-

lem was solved by complex Jacobi iteration for two grid sizes (Dx = Dy) as a function of material loss. In

each case the iterations were terminated when a field-weighted residual of 10�6 was satisfied at each grid

point. The resulting comparison between the predictions of Eq. (24) and the observed iteration count is

shown in Fig. 3 (a pair of Jacobi steps is counted as a single iteration). As can be seen, the agreement



Fig. 1. Schematic of model problem.

Fig. 2. Amplitude profiles for converged model problem. Input at the lower boundary is a Gaussian with field radius 0.5 lm.
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between the stability analysis and the code performance is quite good, with the analysis accurately predict-

ing the influence of both grid size and loss. Keep in mind that although the number of iterations is large,

individual steps are simple and execute quickly. Overall run times for a realistic 3D problem are discussed in

a later section.
4. Preconditioning

Like most finite difference methods, the range of possible eigenvalues of the differenced Helmholtz oper-

ator is much larger than the actual range encountered in a converged problem, because of the existence of

non-physical high spatial frequencies that are resolved by the grid. As was seen in Section 2, the conver-

gence parameter is restricted by requiring the stability of these frequencies even though they will not appear
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Fig. 3. Iterations required for convergence of the model problem vs. the imaginary part of the dielectric constant (no preconditioning).

The curves reflect the analysis described in Section 2.
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in the final solution. One way to view preconditioning, then, is that it preferentially damps the high spatial

frequencies so as to allow a more aggressive convergence parameter, which in turn will lead to a faster prob-

lem convergence. Consistent with this description, we will utilize a classical Jacobi iteration step for the La-

place operator as our preconditioner, with a convergence parameter chosen to optimally damp the high

spatial frequencies. From Eq. (5), with the convergence parameter denoted by b, if the single Jacobi step

for the Helmholtz equation is written in the form
Hnþ1 ¼ 1þ A
4a

� �
Hn; ð25Þ
where A is the normalized Helmholtz operator
A � Lþ k2

1
2

1
Dx2 þ 1

Dy2

� � ; ð26Þ

L � d2x þ d2y ; ð27Þ
then we can define a preconditioned complex Jacobi two-step algorithm by
Hnþ2 ¼ 1� 1

4a�
1þ L

4b

� �
A


 �
1þ 1

4a
1þ L

4b

� �
A


 �
Hn: ð28Þ
Performing the same stability analysis on (28) that was previously done for the non-preconditioned algo-

rithm results in
Anþ2

An ¼ 1�
ew2

� en2

i � 2aieni þ 2iew ai þ eni

� �
aj j2

; ð29Þ
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where
ew � 1� 2sin2d
b

� �
w; ð30Þ

eni � 1� 2sin2d
b

� �
ni: ð31Þ
Since the form of (29) is identical to the non-preconditioned result (13), we expect the solution for an

optimum value of a to be similar. However, it is not identical because the maximum value of ew2
encoun-

tered in the stability analysis now depends on b. Thus we must determine
f bð Þ � max
d2 0;p=2½ �

1

2
1� 2sin2d

b

� �2

nr � 2sin2d
� �2( )

: ð32Þ
Since n2r is expected to be small, the expression in (32) reduces to two possible candidates: (1) a local max-

imum around sin2d = b/4 or (2) the right endpoint sin2d = 1. Thus,
f bð Þ ¼ 1

2
max

1

16
1� nr

b

� �2

nr � bð Þ2; 1� 2

b

� �2

nr � 2ð Þ2
( )

: ð33Þ
Since the first function is monotone increasing over the range of interesting values of b and the second

decreasing, this becomes (again neglecting nr)
f bð Þ ¼
2 1� 2

b

� �2
; b < 4

ffiffiffi
2

p
� 1

� �
;

b2=32; b > 4
ffiffiffi
2

p
� 1

� �
;

8<: ð34Þ
and the analogue of Eq. (21) for the stability condition is
a2i < a2r � f bð Þ: ð35Þ

Now the convergence rate for spatial frequencies of interest is
Anþ2

An ¼ 1þ 2aini 1� 4nrbð Þ
aj j2

ð36Þ

� 1þ 2aini
aj j2

ð37Þ
So, as before, the optimum corresponds to a maximization of ai/jaj2 subject to the stability constraint

(35). This leads to the optimum
aopt ¼
ffiffiffiffiffiffi
3f
2

r
;�

ffiffiffi
f
2

r !
; ð38Þ
corresponding to
ai
aj j2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
8f bð Þ

p : ð39Þ
Thus for the fastest convergence, we should choose b to minimize f. This occurs at the intersection of the

two functions in (33) at the value b ¼ 4ð
ffiffiffi
2

p
� 1Þ � 1:657. For this value, f = 0.086, aopt = (0.36,�0.21), and

ai/jaj2 = 1.207.
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We see that the effect of the preconditioner has been to relax the high-spatial-frequency stability con-

straint and allow much more aggressive values of ai/jaj2 (by more than a factor of 5), resulting in much

faster convergence. We note that the derivations in this section have been somewhat approximate in order

to keep the algebraic expressions simple and illustrate trends. Exact analyses are of questionable value any-

way, since convergence parameters will ultimately be chosen based on experience. The purpose of these for-
mulas is to act as a guide to convergence behavior and parameter optimization.

The preconditioner just described has been tested on the model problem discussed in the previous section

as a check on the convergence rates predicted using the simple analysis. The results, using the optimized

values derived above, are plotted in Fig. 4. We note first that the iteration count is down by more than

a factor of 4 from the non-preconditioned tests. Since somewhat less than twice the numerical effort has

been expended, this represents a real computational savings. Also, we see that, as before, there is good

agreement between the predicted and observed convergence rates, providing confidence in our analysis

and understanding of the method.
At this point, little effort has been expended investigating the effects of other preconditioners, of which

there are many. So it is entirely possible that a different preconditioner than the one described here might

give considerably improved performance. It must be kept in mind, however, that in order to match up well

with the complex Jacobi iterative method, any preconditioner should be fast and simple to code, and should

be suitable for parallel computation, as is the Jacobi preconditioner. Otherwise, much of the advantage of

this method would be lost.

It should also be mentioned that, although all the analyses reported here employ a regular cartesian grid,

the method has been tested successfully with other less regular grids. In fact, the model problem described
here has been solved on an irregular triangular grid [6]. Using the same parameter values as reported above,

the observed convergence rates followed the same trends as shown in Fig. 3, but were somewhat higher.
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5. Extension to three dimensions

Although the derivations and examples have so far been restricted to two dimensions for reasons of clar-

ity and simplicity, it is clear that the real gains of this approach lie in its ability to provide solutions in three

dimensions where the memory requirements of direct matrix inversion are often prohibitive. As might be
expected, the general behavior of the method in 3D is essentially the same as 2D with some slight modifi-

cations. Classical Jacobi iteration for the Helmholtz equation in 3D may be written
2a
1

Dx2
þ 1

Dy2
þ 1

Dz2

� �
Hnþ1

i;j;k � Hn
i;j;k

� �
¼ Lþ k2
� �

Hn; ð40Þ
where L is now the three-dimensional Laplace operator d2x þ d2y þ d2z . The two-step complex Jacobi iterative

method then becomes
Hnþ2 ¼ 1� A
4a�


 �
1þ A

4a


 �
Hn; ð41Þ
where now
A � Lþ k2

1
2

1
Dx2 þ 1

Dy2 þ 1
Dz2

� � : ð42Þ
Performing the same stability analysis as before on (41) yields a similar result:
Anþ2

An � 1þ 2aini
aj j2

; ð43Þ
except that now
n � k2

2 1
Dx2 þ 1

Dy2 þ 1
Dz2

� � : ð44Þ
So we see that a 3D problem with equal grid spacings in all directions will converge at a rate that is 33%

slower than an identical 2D problem due to the difference in the denominators between (44) and (9). Oth-

erwise, all the formulas developed to describe convergence behavior for the 2D problem apply immediately

to the 3D case, including the effects of preconditioning.
6. Sample 3D calculation

In the field of diffractive optics, realistic 3D problems involving single-frequency light propagating

through regions of space containing piecewise constant media usually require the solution of the Helmholtz

equation for all three components of a vector field, either the magnetic field H or the electric field E. If these

components are cartesian, the component equations uncouple except at boundaries between dielectrics

where the requirements of the continuity of tangential E, normal D = �E, and all components of H lead

to coupling terms. Thus for an H-field formulation we require in each region of uniform dielectric constant

� that H satisfy the Helmholtz equation [7]
1

�
r2 þ k20

� �
H ¼ 0; ð45Þ
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where k0 = 2p/k0 is the vacuum wavevector. The derivation of equivalent finite difference equations pro-

ceeds by integrating Eq. (45) over each of the eight rectangular volumes in each quadrant enclosed by

planes parallel to the cartesian axes and extending from the origin at point (i,j,k) to half a grid spacing

in each direction. For generality, the material in each volume is assumed to be described by a unique die-

lectric constant. The use of Green�s theorem then results in a number of area integrals of normal derivatives
of various components of H. When all the integrals over the eight volumes are added, the normal deriva-

tives over areas distant from the origin are approximated in the usual way in terms of fields at the surround-

ing grid points, while those over common planes passing through the origin either cancel (in the case of the

normal field component) or are manipulated using the continuity of tangential E into tangential derivatives

that are easily approximated. This procedure thus leads to the following set of coupled Helmholtz

equations:
AxHx þ BxHy þ CxHz ¼ 0;

AyHy þ ByHz þ CyHx ¼ 0;

AzHz þ BzHx þ CzHy ¼ 0:

ð46Þ
In Eqs. (46) the A�s B�s and C�s are finite difference operators that depend on k0, the grid spacings and die-

lectric constants. In a region where all eight dielectric constants are equal, the B�s and C�s are zero, and the
A�s reduce to a Helmholtz operator proportional to that defined by Eq. (42). If Eq. (46) is rewritten in ma-

trix form as
AH ¼ 0; ð47Þ
with A scaled by the grid spacings in a manner similar to that shown in (42), then the complex Jacobi iter-

ation procedure generalizes to
Hnþ2 ¼ 1� A

4a�


 �
1þA

4a


 �
Hn: ð48Þ
For concreteness, we have chosen to model the reflection of the fundamental TE guided mode of a bur-

ied-oxide waveguide at an etched air gap as a function of the gap width. Calculations such as this are impor-

tant in the field of integrated optics since they provide an estimate of the facet reflectivity for etched-facet

semiconductor lasers. The structure is shown in Fig. 5. The mode of interest is computed using a separate

eigenmode solver and used as a Dirichlet boundary condition to serve as a source. Absorbing materials are

used adjacent to the input boundary and at other lateral boundaries to absorb power that is radiated lat-

erally or reflected back towards the source boundary. At the exit boundary a simple non-adaptive transpar-

ent boundary condition is employed. The reflection coefficient is computed from various overlap integrals
as reported previously [8]. Transmission is computed by comparing the integrated power flux through the

exit boundary with that obtained with zero gap. The resulting reflection coefficient and normalized trans-

mitted power are plotted in Fig. 6 versus gap width.

The number of iterations required for satisfactory convergence of this problem using a Jacobi precon-

ditioner was found to vary with gap width, with narrow gap problems requiring 2500 iterations, and wider

gap problems about 4000. However, runtimes in both cases were acceptable, and an average data point was

computed in about 20 min on a high-end workstation (1.45 GHz IBM P650 with 8 processors) and an hour

on a laptop pc. Thus the iterative method described here is capable of solving non-ideal problems of interest
involving coupled equations over a large problem region (280,000 grid points) with modest memory usage

(175 MB) and runtimes. The workstation runs employed the aid of some parallel processing, but little effort

was expended to optimize the parallelization, as is evident from the modest 3 to 1 speedup over the laptop

times, which employed no parallelization at all.



Fig. 5. Geometry for the Sample 3D problem. Problem input is handled as a Dirichlet boundary condition whose profile is the

fundamental mode of the input waveguide.
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7. Conclusion

We have presented a two-step iterative method for the indefinite Helmholtz equation that converges pre-

dictably provided the problem is well-posed; i.e. that adequate absorption is present to provide a sink for
whatever sources are introduced so that steady-state solutions exist. A simple convergence analysis has been

shown to accurately predict convergence rates for a model problem made up of a uniform lossy dielectric,
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as well as the convergence rate enhancement resulting from the application of a Jacobi preconditioner.

These formulas not only serve as a guide for selecting optimum convergence and preconditioning param-

eters, but also provide insight and confidence regarding the overall behavior of the method. Finally, the

model has been applied to the solution of a nontrivial problem of importance in diffractive optics involving

the resonant reflection of a waveguide mode from an etched air gap. This problem was solved in three
dimensions including all three components of the magnetic field vector in about an hour per gap width va-

lue on a laptop personal computer. This accomplishment aptly demonstrates the modest runtimes and

memory requirements necessary to affect the solution of a nontrivial problem of significant value. Even

more efficient execution is expected from parallel processors, since both the iterative method and the Jacobi

preconditioner described above are ideally suited for parallel processing.
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